Star-Shaped Gold Nanoparticles as Friendly Interfaces for Protein Electrochemistry: the Case Study of Cytochrome *c*

Célia Silveira¹, Rosaceleste Zumpano², Miguel Moreira¹, Miguel Peixoto de Almeida³, Maria João Oliveira^{1,4}, Marina Bento¹, Cláudia Montez¹, Inês Paixão¹, Ricardo Franco¹, Eulália Pereira³, Maria Gabriela Almeida^{1,5}.

¹ UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa 2829-516 Monte de Caparica, Portugal

² Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

³ LAQV, REQUIMTE, Dep. Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal

⁴ i3 N/CENIMAT, Dep. Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa and CEMOP/UNINOVA, 2829-516 Caparica, Portugal

⁵ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal

*e-mail: rosaceleste.zumpano@uniroma1.it

Star-shaped gold nanoparticles (AuNSs) with an average tip-to-tip length of 52 ± 6 nm have been employed as protein direct electron transfer (DET) promoters. To the best of our knowledge, this is the first time that non-spherical metal nanoparticles were used for this purpose. Specifically, DET of cytochrome *c* (cyt *c*) in solution was improved at AuNSs interfaces compared with gold nanospheres (AuNSphs) based electrodes. Therefore, the cyt *c* DET was evaluated in other two conditions: i) cyt *c* physically adsorbed onto AuNSs-modified pyrolytic graphite (PG) electrodes; ii) cyt *c*-AuNSs bioconjugates adsorbed onto pyrolytic graphite electrodes. The physical adsorption of cyt *c* onto AuNSs-PG electrodes induced the formation of a non-native species with peroxidase activity, wich was enhanced in presence of AuNSs. This platform (LOD=0,49 μ M, linear range 1-20 μ M) proved to be suitable for further improvements in order to realize a DETbased biosensor for H₂O₂ detection. Interestingly, the adsorption of cyt *c*-AuNSs bioconjugates onto PG electrodes shows the ritention of the protein native properties, proving that AuNSs represent a favourable microenvironment for the cyt *c*.

Figure 1. Schematic representation of cyt *c* DET enhancement promoted by AuNSs – PG interfaces (on the left) and bionanoconjugates formation via electrostatic interactions between cyt *c* (positive net charge at pH < pI=10) and negative charged capping agents.